کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4615888 1339331 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unbounded order convergence and application to martingales without probability
ترجمه فارسی عنوان
هماهنگی نظم بدون محدودیت و کاربرد آن به مارتینال ها بدون احتمالی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

A net (xα)α∈Γ(xα)α∈Γ in a vector lattice X is unbounded order convergent (uo-convergent) to x   if |xα−x|∧y→o0 for each y∈X+y∈X+, and is unbounded order Cauchy (uo-Cauchy) if the net (xα−xα′)Γ×Γ(xα−xα′)Γ×Γ is uo-convergent to 0. In the first part of this article, we study uo-convergent and uo-Cauchy nets in Banach lattices and use them to characterize Banach lattices with the positive Schur property and KB-spaces. In the second part, we use the concept of uo-Cauchy sequences to extend Doob's submartingale convergence theorems to a measure-free setting. Our results imply, in particular, that every norm bounded submartingale in L1(Ω;F)L1(Ω;F) is almost surely uo-Cauchy in F, where F is an order continuous Banach lattice with a weak unit.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 415, Issue 2, 15 July 2014, Pages 931–947
نویسندگان
, ,