کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4616199 1339341 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On metric properties of limit sets of contractive analytic non-Archimedean dynamical systems
ترجمه فارسی عنوان
در خصوص ویژگی های متریک از مجموعه های محدودی از سیستم های دینامیکی غیر تحلیلی قراردادی تحلیلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

Let KK be an algebraically closed field which is complete with respect to a non-trivial non-Archimedean absolute value |⋅||⋅|. We study metric properties of the limit set Λ of a semigroup G   generated by a finite set of contractive analytic functions on O={z∈K||z|⩽1}O={z∈K||z|⩽1}. We prove that the limit set Λ of G is uniformly perfect if the derivative of each generating function of G   does not vanish on OO. Furthermore, we show that if each coefficient of the generating functions is in the field QpQp of p-adic numbers, or the limit set Λ satisfies the strong open set condition, then Λ has the doubling property. This yields that the limit set Λ   is quasisymmetrically equivalent to the space Z2Z2 of 2-adic integers. We also give a counterexample to show that not all limit sets have the doubling property. The Berkovich space is introduced to study the limit set Λ, and we prove that the limit set Λ has a positive capacity in the Berkovich space which yields that there exists an equilibrium measure μ whose support is contained in the limit set Λ. We also show that if the semigroup is generated by a countable set of contractive analytic functions, then its limit set Λ   can be non-compact. However, if coefficients of the generating functions lie in QpQp, then the limit set Λ is compact.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 414, Issue 1, 1 June 2014, Pages 386–401
نویسندگان
, , , ,