کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4616316 1339346 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of potential smoothness and the Riesz basis property of the Hill–Schrödinger operator in terms of periodic, antiperiodic and Neumann spectra
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Characterization of potential smoothness and the Riesz basis property of the Hill–Schrödinger operator in terms of periodic, antiperiodic and Neumann spectra
چکیده انگلیسی

The Hill operators Ly=−y″+v(x)yLy=−y″+v(x)y, considered with complex valued ππ-periodic potentials vv and subject to periodic, antiperiodic or Neumann boundary conditions have discrete spectra. For sufficiently large nn, close to n2n2 there are two periodic (if nn is even) or antiperiodic (if nn is odd) eigenvalues λn−, λn+ and one Neumann eigenvalue νnνn. We study the geometry of “the spectral triangle” with vertices (λn+, λn−, νnνn), and show that the rate of decay of triangle size characterizes the potential smoothness. Moreover, it is proved, for v∈Lp([0,π]),p>1, that the set of periodic (antiperiodic) root functions contains a Riesz basis if and only if for even (respectively, odd) nnsupλn+≠λn−{|λn+−νn|/|λn+−λn−|}<∞.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 405, Issue 2, 15 September 2013, Pages 453–465
نویسندگان
,