کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4616421 | 1339349 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence results for a class of spectrally hyperviscous models of 3-D turbulent flow
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the spectrally hyperviscous Navier-Stokes equations (SHNSE) which add hyperviscosity to the NSE but only to the higher frequencies past a cutoff wavenumber m0. In Guermond and Prudhomme (2003) [18], subsequence convergence of SHNSE Galerkin solutions to dissipative solutions of the NSE was achieved in a specific spectral-vanishing-viscosity setting. Our goal is to obtain similar results in a more general setting and to obtain convergence to the stronger class of Leray solutions. In particular we obtain subsequence convergence of SHNSE strong solutions to Leray solutions of the NSE by fixing the hyperviscosity coefficient μ while the spectral hyperviscosity cutoff m0 goes to infinity. This formulation presents new technical challenges, and we discuss how its motivation can be derived from computational experiments, e.g. those in Borue and Orszag (1996, 1998) [3,4]. We also obtain weak subsequence convergence to Leray weak solutions under the general assumption that the hyperviscous coefficient μ goes to zero with no constraints imposed on the spectral cutoff. In both of our main results the Aubin Compactness Theorem provides the underlying framework for the convergence to Leray solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 409, Issue 2, 15 January 2014, Pages 742-751
Journal: Journal of Mathematical Analysis and Applications - Volume 409, Issue 2, 15 January 2014, Pages 742-751
نویسندگان
Joel Avrin, Xiao Chang,