کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4616484 | 1339351 | 2013 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bäcklund transformation and Wronskian solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Korteweg-de Vries-type equations are seen to describe the shallow water waves, stratified internal waves, ion-acoustic waves, plasma physics and lattice dynamics, an isotropic extension of which are the (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Hereby, based on the Hirota bilinear method and symbolic computation, we derive the bilinear form and Bäcklund transformation for such an extension. N-soliton solutions in the Wronskian form are given, and it can be verified that the Bäcklund transformation can connect the (Nâ1)- and N-soliton solutions. Solitonic propagation and collision are discussed: the larger-amplitude soliton moves faster and then overtakes the smaller one. After the collisions, the solitons keep their original shapes and velocities invariant except for the phase shift. Collisions among the two and three solitons are all elastic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 406, Issue 1, 1 October 2013, Pages 15-21
Journal: Journal of Mathematical Analysis and Applications - Volume 406, Issue 1, 1 October 2013, Pages 15-21
نویسندگان
Wen-Rong Sun, Wen-Rui Shan, Yan Jiang, Min Li, Bo Tian,