کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4616525 | 1339352 | 2013 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The aim of this paper is to describe Henstock-Kurzweil-Pettis (HKP) integrable compact valued multifunctions. Such characterizations are known in case of functions (see Di Piazza and MusiaÅÂ (2006)Â [16]). It is also known (see Di Piazza and MusiaÅÂ (2010)Â [19]) that each HKP-integrable compact valued multifunction can be represented as a sum of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that decomposition, we present a pure topological characterization of integrability. Having applied the above results, we obtain two convergence theorems, that generalize results known for HKP-integrable functions. We emphasize also the special role played in the theory by weakly sequentially complete Banach spaces and by spaces possessing the Schur property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 408, Issue 2, 15 December 2013, Pages 452-464
Journal: Journal of Mathematical Analysis and Applications - Volume 408, Issue 2, 15 December 2013, Pages 452-464
نویسندگان
Luisa Di Piazza, Kazimierz MusiaÅ,