کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4616525 1339352 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space
چکیده انگلیسی
The aim of this paper is to describe Henstock-Kurzweil-Pettis (HKP) integrable compact valued multifunctions. Such characterizations are known in case of functions (see Di Piazza and Musiał (2006)  [16]). It is also known (see Di Piazza and Musiał (2010)  [19]) that each HKP-integrable compact valued multifunction can be represented as a sum of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that decomposition, we present a pure topological characterization of integrability. Having applied the above results, we obtain two convergence theorems, that generalize results known for HKP-integrable functions. We emphasize also the special role played in the theory by weakly sequentially complete Banach spaces and by spaces possessing the Schur property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 408, Issue 2, 15 December 2013, Pages 452-464
نویسندگان
, ,