کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4617228 | 1339374 | 2013 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A note on dyadic coverings and nondoubling Calderón-Zygmund theory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We construct a family of n+1 dyadic filtrations in Rn, so that every Euclidean ball B is contained in some cube Q of our family satisfying diam(Q)â¤cndiam(B) for some dimensional constant cn. Our dyadic covering is optimal on the number of filtrations and improves previous results of Christ and Garnett/Jones by extending a construction of Mei for the n-torus. Based on this covering and motivated by applications to matrix-valued functions, we provide a dyadic nondoubling Calderón-Zygmund decomposition which avoids Besicovitch type coverings in Tolsa's decomposition. We also use a recent result of Hytönen and Kairema to extend our dyadic nondoubling decomposition to the more general setting of upper doubling metric spaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 397, Issue 2, 15 January 2013, Pages 785-790
Journal: Journal of Mathematical Analysis and Applications - Volume 397, Issue 2, 15 January 2013, Pages 785-790
نویسندگان
Jose M. Conde,