کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4617328 | 1339377 | 2012 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Complex uniform rotundity in symmetric spaces of measurable operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let M be a semifinite von Neumann algebra with a faithful, normal, semifinite trace Ï and E be a symmetric Banach function space on [0,Ï(1)). We show that E is complex uniformly rotund if and only if E(M,Ï)+ is complex uniformly rotund. Moreover, under the assumption that E is p-convex for some p>1, complex uniform rotundity of E implies complex uniform rotundity of E(M,Ï). Therefore if E has non-trivial convexity, complex uniform convexity of E is equivalent with complex uniform convexity of E(M,Ï). We obtain an analogous result for the unitary matrix space CE and a symmetric Banach sequence space E. From the above we conclude that E(M,Ï)+ is complex uniformly rotund if and only if its norm ââ
âE(M,Ï) is uniformly monotone.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 395, Issue 2, 15 November 2012, Pages 501-508
Journal: Journal of Mathematical Analysis and Applications - Volume 395, Issue 2, 15 November 2012, Pages 501-508
نویسندگان
M.M. CzerwiÅska,