کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4617586 | 1339386 | 2012 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The structured distance to non-surjectivity and its application to calculating the controllability radius of descriptor systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The classical Eckart–Young formula for square matrices identifies the distance to singularity of a matrix. The main purpose of this paper is to get generalizations of this formula. We characterize the distance to non-surjectivity of a linear operator W∈L(X,Y) in finite-dimensional normed spaces X, Y, under the assumption that the operator W is surjective (i.e. WX=Y) and subjected to structured perturbations of the form W+MΔN. As an application of these results, we shall derive formulas of the controllability radius for a descriptor controllable system , t⩾0, under the assumption that systems matrices E, A, B are subjected to structured perturbations and to multi-perturbations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 388, Issue 1, 1 April 2012, Pages 272-281
Journal: Journal of Mathematical Analysis and Applications - Volume 388, Issue 1, 1 April 2012, Pages 272-281