کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4617612 1339386 2012 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Convergence rates for total variation regularization of coefficient identification problems in elliptic equations II
چکیده انگلیسی

We investigate the convergence rates for total variation regularization of the problem of identifying (i) the coefficient q   in the Neumann problem for the elliptic equation −div(q∇u)=f−div(q∇u)=f in Ω  , q∂u/∂n=gq∂u/∂n=g on ∂Ω, (ii) the coefficient a   in the Neumann problem for the elliptic equation −Δu+au=f−Δu+au=f in Ω  , ∂u/∂n=g∂u/∂n=g on ∂Ω  , Ω⊂RdΩ⊂Rd, d⩾1d⩾1, when u   is imprecisely given by zδ∈H1(Ω)zδ∈H1(Ω), ‖u−zδ‖H1(Ω)⩽δ‖u−zδ‖H1(Ω)⩽δ, δ>0δ>0. We regularize these problems by correspondingly minimizing the strictly convex functionals12∫Ωq|∇(U(q)−zδ)|2dx+ρ(12‖q‖L2(Ω)2+∫Ω|∇q|), and12∫Ω|∇(U(a)−zδ)|2dx+12∫Ωa(U(a)−zδ)2dx+ρ(12‖a‖L2(Ω)2+∫Ω|∇a|) over admissible sets, where U(q)U(q) (U(a)U(a)) is the solution of the first (second) Neumann boundary value problem, ρ>0ρ>0 is the regularization parameter. Taking the solutions of these optimization problems as the regularized solutions to the corresponding identification problems, we obtain the convergence rates of them to the solution of the inverse problem in the sense of the Bregman distance and in the L2L2-norm under relatively simple source conditions without the smallness requirement on the source functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 388, Issue 1, 1 April 2012, Pages 593–616
نویسندگان
, ,