کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4617667 1339387 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Viscous limit to contact discontinuity for the 1-D compressible Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Viscous limit to contact discontinuity for the 1-D compressible Navier–Stokes equations
چکیده انگلیسی

In this paper, we study the zero dissipation limit problem for the one-dimensional compressible Navier–Stokes equations. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the Navier–Stokes equations which converge to the inviscid solution away from the contact discontinuity at a rate of as the heat-conductivity coefficient κ tends to zero, provided that the viscosity μ is higher order than the heat-conductivity κ or the same order as κ. Here we have no need to restrict the strength of the contact discontinuity to be small.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 387, Issue 2, 15 March 2012, Pages 1033-1043