کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4617823 1339391 2011 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recursive estimation for ordered eigenvectors of symmetric matrix with observation noise
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Recursive estimation for ordered eigenvectors of symmetric matrix with observation noise
چکیده انگلیسی

The principal component analysis is to recursively estimate the eigenvectors and the corresponding eigenvalues of a symmetric matrix A based on its noisy observations Ak=A+Nk, where A is allowed to have arbitrary eigenvalues with multiplicity possibly bigger than one. In the paper the recursive algorithms are proposed and their ordered convergence is established: It is shown that the first algorithm a.s. converges to a unit eigenvector corresponding to the largest eigenvalue, the second algorithm a.s. converges to a unit eigenvector corresponding to either the second largest eigenvalue in the case the largest eigenvalue is of single multiplicity or the largest eigenvalue if the multiplicity of the largest eigenvalue is bigger than one, and so on. The convergence rate is also derived.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 2, 15 October 2011, Pages 822-842