کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4617849 | 1339392 | 2012 | 20 صفحه PDF | دانلود رایگان |

A class of smoothing sample average approximation (SAA) methods is proposed for solving the stochastic mathematical program with complementarity constraints (SMPCC) considered by Birbil et al. [S.I. Birbil, G. Gürkan, O. Listes, Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res. 31 (2006) 739–760]. The almost sure convergence of optimal solutions of the smoothed SAA problem to that of the true problem is established by the notion of epi-convergence in variational analysis. It is demonstrated that, under suitable conditions, any accumulation point of Karash–Kuhn–Tucker points of the smoothed SAA problem is almost surely a kind of stationary point of SMPCC as the sample size tends to infinity. Moreover, under a strong second-order sufficient condition for SMPCC, the exponential convergence rate of the sequence of Karash–Kuhn–Tucker points of the smoothed SAA problem is investigated through an application of Robinsonʼs stability theory. Some preliminary numerical results are reported to show the efficiency of proposed method.
Journal: Journal of Mathematical Analysis and Applications - Volume 387, Issue 1, 1 March 2012, Pages 201-220