کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4617909 1631569 2011 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Long memory in a linear stochastic Volterra differential equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Long memory in a linear stochastic Volterra differential equation
چکیده انگلیسی

In this paper we consider a linear stochastic Volterra equation which has a stationary solution. We show that when the kernel of the fundamental solution is regularly varying at infinity with a log-convex tail integral, then the autocovariance function of the stationary solution is also regularly varying at infinity and its exact pointwise rate of decay can be determined. Moreover, it can be shown that this stationary process has either long memory in the sense that the autocovariance function is not integrable over the reals or is subexponential. Under certain conditions upon the kernel, even arbitrarily slow decay rates of the autocovariance function can be achieved. Analogous results are obtained for the corresponding discrete equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 380, Issue 2, 15 August 2011, Pages 814-830