کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4617909 | 1631569 | 2011 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Long memory in a linear stochastic Volterra differential equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we consider a linear stochastic Volterra equation which has a stationary solution. We show that when the kernel of the fundamental solution is regularly varying at infinity with a log-convex tail integral, then the autocovariance function of the stationary solution is also regularly varying at infinity and its exact pointwise rate of decay can be determined. Moreover, it can be shown that this stationary process has either long memory in the sense that the autocovariance function is not integrable over the reals or is subexponential. Under certain conditions upon the kernel, even arbitrarily slow decay rates of the autocovariance function can be achieved. Analogous results are obtained for the corresponding discrete equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 380, Issue 2, 15 August 2011, Pages 814-830
Journal: Journal of Mathematical Analysis and Applications - Volume 380, Issue 2, 15 August 2011, Pages 814-830