کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618032 | 1339397 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The divergence equation in rough spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We aim at extending the existence theory for the equation in a bounded or exterior domain with homogeneous Dirichlet boundary conditions, to a class of solutions which need not have a trace at the boundary. Typically, the weak solutions that we shall consider will belong to some Besov space with s∈(−1+1/p,1/p). After generalizing the notion of a solution for this equation, we propose an explicit construction by means of the classical Bogovskiĭ formula. This construction enables us to keep track of a “marginal” information about the trace of solutions. In particular, it ensures that the trace is zero if f is smooth enough. We expect our approach to be of interest for the study of rough solutions to systems of fluid mechanics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 386, Issue 1, 1 February 2012, Pages 10-31
Journal: Journal of Mathematical Analysis and Applications - Volume 386, Issue 1, 1 February 2012, Pages 10-31