کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618064 1339397 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Snapback repellers and homoclinic orbits for multi-dimensional maps
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Snapback repellers and homoclinic orbits for multi-dimensional maps
چکیده انگلیسی

Marotto extended Li–Yorkeʼs theorem on chaos from one-dimension to multi-dimension through introducing the notion of snapback repeller in 1978. Due to a technical flaw, he redefined snapback repeller in 2005 to validate this theorem. This presentation provides two methodologies to facilitate the application of Marottoʼs theorem. The first one is to estimate the radius of repelling neighborhood for a repelling fixed point. This estimation is of essential and practical significance as combined with numerical computations of snapback points. Secondly, we propose a sequential graphic-iteration scheme to construct homoclinic orbit for a repeller. This construction allows us to track the homoclinic orbit. Applications of the present methodologies with numerical computation to a chaotic neural network and a predator–prey model are demonstrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 386, Issue 1, 1 February 2012, Pages 387-400