کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618090 1339398 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems
چکیده انگلیسی

It was recently proven in Case et al. (2010) [2] that, under mild restrictions, grad-div stabilized Taylor–Hood solutions of Navier–Stokes problems converge to the Scott–Vogelius solution of that same problem. However, even though the analytical rate was only shown to be (where γ is the stabilization parameter), the computational results suggest the rate may be improvable to γ−1. We prove herein the analytical rate is indeed γ−1, and extend the result to other incompressible flow problems including Leray-α and MHD. Numerical results are given that verify the theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 381, Issue 2, 15 September 2011, Pages 612-626