کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618093 1339398 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Cauchy–Kovalevskaya extension theorem in Hermitian Clifford analysis
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Cauchy–Kovalevskaya extension theorem in Hermitian Clifford analysis
چکیده انگلیسی

Hermitian Clifford analysis is a higher dimensional function theory centered around the simultaneous null solutions, called Hermitian monogenic functions, of two Hermitian conjugate complex Dirac operators. As an essential step towards the construction of an orthogonal basis of Hermitian monogenic polynomials, in this paper a Cauchy–Kovalevskaya extension theorem is established for such polynomials. The minimal number of initial polynomials needed to obtain a unique Hermitian monogenic extension is determined, along with the compatibility conditions they have to satisfy. The Cauchy–Kovalevskaya extension principle then allows for a dimensional analysis of the spaces of spherical Hermitian monogenics, i.e. homogeneous Hermitian monogenic polynomials. A version of this extension theorem for specific real-analytic functions is also obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 381, Issue 2, 15 September 2011, Pages 649-660