کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618104 | 1339398 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Chaos among self-maps of the Cantor space
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Glasner and Weiss have shown that a generic homeomorphism of the Cantor space has zero topological entropy. Hochman has shown that a generic transitive homeomorphism of the Cantor space has the property that it is topologically conjugate to the universal odometer and hence far from being chaotic in any sense. We show that a generic self-map of the Cantor space has zero topological entropy. Moreover, we show that a generic self-map of the Cantor space has no periodic points and hence is not Devaney chaotic nor Devaney chaotic on any subsystem. However, we exhibit a dense subset of the space of all self-maps of the Cantor space each element of which has infinite topological entropy and is Devaney chaotic on some subsystem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 381, Issue 2, 15 September 2011, Pages 781-788
Journal: Journal of Mathematical Analysis and Applications - Volume 381, Issue 2, 15 September 2011, Pages 781-788