کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618143 | 1339399 | 2012 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A universal bound for radial solutions of the quasilinear parabolic equation with p-Laplace operator
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we prove a universal bound for nonnegative radial solutions of the p-Laplace equation with nonlinear source ut=div(|∇u|p−2∇u)+uq, where p>2 and q>p−1. This bound implies initial and final blowup rate estimates, as well as a priori estimate or decay rate for global solutions. Our bound is proved as a consequence of Liouville-type theorems for entire solutions and doubling and rescaling arguments. In this connection, we use a known Liouville-type theorem for radial solutions, along with a new Liouville-type theorem that is here established for nontrivial solutions in R.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 385, Issue 1, 1 January 2012, Pages 125-134
Journal: Journal of Mathematical Analysis and Applications - Volume 385, Issue 1, 1 January 2012, Pages 125-134