کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618263 1339402 2011 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multigrid-based preconditioned Krylov subspace method for the Helmholtz equation with PML
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A multigrid-based preconditioned Krylov subspace method for the Helmholtz equation with PML
چکیده انگلیسی

In this paper, we generalize the complex shifted Laplacian preconditioner to the complex shifted Laplacian-PML preconditioner for the Helmholtz equation with perfectly matched layer (Helmholtz-PML equation). The Helmholtz-PML equation is discretized by an optimal 9-point difference scheme, and the preconditioned linear system is solved by the Krylov subspace method, especially by the biconjugate gradient stabilized method (Bi-CGSTAB). The spectral analysis of the linear system is given, and a new matrix-based interpolation operator is proposed for the multigrid method, which is used to approximately invert the preconditioner. The numerical experiments are presented to illustrate the efficiency of the preconditioned Bi-CGSTAB method with the multigrid based on the new interpolation operator, also, numerical results are given for comparing the performance of the new interpolation operator with that of classic bilinear interpolation operator and the one suggested in Erlangga et al. (2006) [10].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 383, Issue 2, 15 November 2011, Pages 522-540