کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618298 | 1339403 | 2011 | 24 صفحه PDF | دانلود رایگان |

In this paper we study a family of models with delays describing the process of angiogenesis, that is a physiological process involving the growth of new blood vessels from pre-existing ones. This family includes the well-known models of tumour angiogenesis proposed by Hahnfeldt et al. and dʼOnofrio–Gandolfi and is based on the Gompertz type of the tumour growth. As a consequence we start our analysis from the influence of delay onto the Gompertz model dynamics. The family of models considered in this paper depends on two time delays and a parameter α∈[0,1] which reflects how strongly the vessels dynamics depends on the ratio between tumour and vessels volume. We focus on the analysis of the model in three cases: one of the delays is equal to 0 or both delays are equal, depending on the parameter α. We study the stability switches, the Hopf bifurcation and the stability of arising periodic orbits for different α∈[0,1], especially for α=1 and α=0 which reflects the Hahnfeldt et al. and the dʼOnofrio–Gandolfi models. For comparison we use also the value α=1/2.
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 1, 1 October 2011, Pages 180-203