کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618302 1339403 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of Gevrey approximate solutions for certain systems of linear vector fields applied to involutive systems of first-order nonlinear pdes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Existence of Gevrey approximate solutions for certain systems of linear vector fields applied to involutive systems of first-order nonlinear pdes
چکیده انگلیسی

Given a GsGs-involutive structure  , (M,V)(M,V), a Gevrey submanifold X⊂MX⊂M which is maximally real and a Gevrey function u0u0 on X we construct a Gevrey function u   which extends u0u0 and is a Gevrey approximate solution for VV. We then use our construction to study Gevrey micro-local regularity of solutions, u∈C2(RN)u∈C2(RN), of a system of nonlinear pdes of the formFj(x,u,ux)=0,j=1,…,n, where Fj(x,ζ0,ζ)Fj(x,ζ0,ζ) are Gevrey functions of order s>1s>1 and holomorphic in (ζ0,ζ)∈C×CN(ζ0,ζ)∈C×CN. The functions FjFj satisfy an involutive condition and dζF1∧⋯∧dζFn≠0dζF1∧⋯∧dζFn≠0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 1, 1 October 2011, Pages 248–260
نویسندگان
, ,