کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618310 | 1339403 | 2011 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its resolvent and the Dirichlet resolvent is expressed in terms of operators acting on Sobolev spaces over Σ+. This is used to obtain a new Weyl-type spectral asymptotics formula for the resolvent difference (where upper estimates were known before), namely , where C0,+ is proportional to the area of Σ+, in the case where A is principally equal to the Laplacian.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 1, 1 October 2011, Pages 339-363
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 1, 1 October 2011, Pages 339-363