کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618310 1339403 2011 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates
چکیده انگلیسی

For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its resolvent and the Dirichlet resolvent is expressed in terms of operators acting on Sobolev spaces over Σ+. This is used to obtain a new Weyl-type spectral asymptotics formula for the resolvent difference (where upper estimates were known before), namely , where C0,+ is proportional to the area of Σ+, in the case where A is principally equal to the Laplacian.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 382, Issue 1, 1 October 2011, Pages 339-363