کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618348 1339404 2011 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solutions of the Cheeger problem via torsion functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Solutions of the Cheeger problem via torsion functions
چکیده انگلیسی

The Cheeger problem for a bounded domain Ω⊂RN, N>1 consists in minimizing the quotients |∂E|/|E| among all smooth subdomains E⊂Ω and the Cheeger constant h(Ω) is the minimum of these quotients. Let be the p-torsion function, that is, the solution of torsional creep problem −Δpϕp=1 in Ω, ϕp=0 on ∂Ω, where Δpu:=div(|∇u|p−2∇u) is the p-Laplacian operator, p>1. The paper emphasizes the connection between these problems. We prove that . Moreover, we deduce the relation limp→1+‖ϕp‖L1(Ω)⩾CNlimp→1+‖ϕp‖L∞(Ω) where CN is a constant depending only of N and h(Ω), explicitely given in the paper. An eigenfunction u∈BV(Ω)∩L∞(Ω) of the Dirichlet 1-Laplacian is obtained as the strong L1 limit, as p→1+, of a subsequence of the family {ϕp/‖ϕp‖L1(Ω)}p>1. Almost all t-level sets Et of u are Cheeger sets and our estimates of u on the Cheeger set |E0| yield |B1|hN(B1)⩽|E0|hN(Ω), where B1 is the unit ball in RN. For Ω convex we obtain u=|E0|−1χE0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 381, Issue 1, 1 September 2011, Pages 263-279