کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618425 1339406 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The classification of self-adjoint boundary conditions of differential operators with two singular endpoints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The classification of self-adjoint boundary conditions of differential operators with two singular endpoints
چکیده انگلیسی

For general even order linear ordinary differential equations with real coefficients and endpoints which are regular or singular and for arbitrary deficiency index d, the self-adjoint domains are determined by d linearly independent boundary conditions. These conditions are of three types: separated, coupled, and mixed. We give a construction for all conditions of each type and determine the number of conditions of each type possible for a given self-adjoint domain. Our construction gives a direct alternative to the recent construction of Everitt and Markus which uses the theory of symplectic spaces. We believe our construction will prove useful in the spectral analysis of these operators and in obtaining canonical forms of self-adjoint boundary conditions. Such forms are known only in the second order, i.e. Sturm–Liouville, case. Even for regular problems of order four no such forms are available. In the case when all d conditions are separated this construction yields explicit non-real conditions for all orders greater than two. It is well known that no such conditions exist in the second order case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 378, Issue 2, 15 June 2011, Pages 493-506