کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618472 1339407 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smooth extension of functions on a certain class of non-separable Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Smooth extension of functions on a certain class of non-separable Banach spaces
چکیده انگلیسی

Let us consider a Banach space X with the property that every real-valued Lipschitz function f can be uniformly approximated by a Lipschitz, C1-smooth function g with Lip(g)⩽CLip(f) (with C depending only on the space X). This is the case for a Banach space X bi-Lipschitz homeomorphic to a subset of c0(Γ), for some set Γ, such that the coordinate functions of the homeomorphism are C1-smooth (Hájek and Johanis, 2010 [10], ). Then, we prove that for every closed subspace Y⊂X and every C1-smooth (Lipschitz) function f:Y→R, there is a C1-smooth (Lipschitz, respectively) extension of f to X. We also study C1-smooth extensions of real-valued functions defined on closed subsets of X. These results extend those given in Azagra et al. (2010) [4] to the class of non-separable Banach spaces satisfying the above property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 378, Issue 1, 1 June 2011, Pages 173-183