کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618474 | 1339407 | 2011 | 15 صفحه PDF | دانلود رایگان |

In this paper, we consider a Lipschitz optimization problem (LOP) constrained by linear functions in Rn. In general, since it is hard to solve (LOP) directly, (LOP) is transformed into a certain problem (MP) constrained by a ball in Rn+1. Despite there is no guarantee that the objective function of (MP) is quasi-convex, by using the idea of the quasi-conjugate function defined by Thach (1991) [1], we can construct its dual problem (DP) as a quasi-convex maximization problem. We show that the optimal value of (DP) coincides with the multiplication of the optimal value of (MP) by −1, and that each optimal solution of the primal and dual problems can be easily obtained by the other. Moreover, we formulate a bidual problem (BDP) for (MP) (that is, a dual problem for (DP)). We show that the objective function of (BDP) is a quasi-convex function majorized by the objective function of (MP) and that both optimal solution sets of (MP) and (BDP) coincide. Furthermore, we propose an outer approximation method for solving (DP).
Journal: Journal of Mathematical Analysis and Applications - Volume 378, Issue 1, 1 June 2011, Pages 198-212