کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618595 1339414 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcation diagrams of a p-Laplacian Dirichlet problem with Allee effect and an application to a diffusive logistic equation with predation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Bifurcation diagrams of a p-Laplacian Dirichlet problem with Allee effect and an application to a diffusive logistic equation with predation
چکیده انگلیسی
We study bifurcation diagrams of positive solutions for the p-Laplacian Dirichlet problem{(φp(u′(x)))′+λf(u)=0,−11, φp(y)=|y|p−2y, (φp(u′))′ is the one-dimensional p-Laplacian, λ>0 is a bifurcation parameter, and g is of Allee effect type. Assuming one suitable condition on g, we prove that, on the (λ,‖u‖∞)-plane, the bifurcation diagram consists of exactly one continuous curve with exactly one turning point where the curve turns to the right. Hence the problem has at most two positive solutions for each λ>0. More precisely, we are able to prove the exact multiplicity of positive solutions. We give an application to a p-Laplacian diffusive logistic equation with predation of Holling type II functional response. To this logistic equation with multiparameters, more precisely, we give a complete description of the structure of the bifurcation diagrams.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 375, Issue 1, 1 March 2011, Pages 294-309
نویسندگان
, ,