کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4618751 | 1339418 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A functional characterization of measures and the Banach–Ulam problem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a measurable space (Ω,A), let ℓ∞(A) be the closure of span{χA:A∈A} in ℓ∞(Ω). In this paper we show that a sufficient and necessary condition for a real-valued finitely additive measure μ on (Ω,A) to be countably additive is that the corresponding functional ϕμ defined by (for x∈ℓ∞(A)) is w*-sequentially continuous. With help of the Yosida–Hewitt decomposition theorem of finitely additive measures, we show consequently that every continuous functional on ℓ∞(A) can be uniquely decomposed into the ℓ1-sum of a w*-continuous functional, a purely w*-sequentially continuous functional and a purely (strongly) continuous functional. Moreover, several applications of the results to measure extension are given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 374, Issue 2, 15 February 2011, Pages 558-565
Journal: Journal of Mathematical Analysis and Applications - Volume 374, Issue 2, 15 February 2011, Pages 558-565