کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618829 1339420 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A note on ball-covering property of Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A note on ball-covering property of Banach spaces
چکیده انگلیسی

By a ball-covering B of a Banach space X, we mean that B is a collection of open (or closed) balls off the origin whose union contains the unit sphere SX of X; and X is said to have the ball-covering property (BCP) provided it admits a ball-covering by countably many balls. In this note we give a natural example showing that the ball-covering property of a Banach space is not inherited by its subspaces; and we present a sharp quantitative version of the recent Fonf and Zanco renorming result saying that if the dual X∗ of X is w∗ separable, then for every ε>0 there exist a (1+ε)-equivalent norm on X, and an R>0 such that in this new norm SX admits a ball-covering by countably many balls of radius R. Namely, we show that R=R(ε) can be taken arbitrarily close to (1+ε)/ε, and that for X=ℓ1[0,1] the corresponding R cannot be equal to 1/ε. This gives the sharp order of magnitude for R(ε) as ε→0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 371, Issue 1, 1 November 2010, Pages 249-253