کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4618874 1339421 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using a natural deconvolution for analysis of perturbed integer sampling in shift-invariant spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Using a natural deconvolution for analysis of perturbed integer sampling in shift-invariant spaces
چکیده انگلیسی

An important cornerstone of both wavelet and sampling theory is shift-invariant spaces, that is, spaces V spanned by a Riesz basis of integer-translates of a single function. Under some mild differentiability and decay assumptions on the Fourier transform of this function, we show that V also is generated by a function with Fourier transform for some g with . We explain why analysis of this particular generating function can be more likely to provide large jitter bounds ε such that any f∈V can be reconstructed from perturbed integer samples f(k+εk) whenever supk∈Z|εk|⩽ε. We use this natural deconvolution of to further develop analysis techniques from a previous paper. Then we demonstrate the resulting analysis method on the class of spaces for which g has compact support and bounded variation (including all spaces generated by Meyer wavelet scaling functions), on some particular choices of φ for which we know of no previously published bounds and finally, we use it to improve some previously known bounds for B-spline shift-invariant spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 373, Issue 1, 1 January 2011, Pages 271-286