کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4619001 | 1339425 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A method for computing global minima of real multivariate polynomials based on semidefinite programming was developed by N.Z. Shor, J.B. Lasserre and P.A. Parrilo. The aim of this article is to extend a variant of their method to noncommutative symmetric polynomials in variables X and Y satisfying YX−XY=1 and X*=X, Y*=−Y. Global minima of such polynomials are defined and showed to be equal to minima of the spectra of the corresponding differential operators. We also discuss how to exploit sparsity and symmetry. Several numerical experiments are included. The last section explains how our theory fits into the framework of noncommutative real algebraic geometry.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 369, Issue 2, 15 September 2010, Pages 443-452
Journal: Journal of Mathematical Analysis and Applications - Volume 369, Issue 2, 15 September 2010, Pages 443-452