کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619002 1339425 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform asymptotics and zeros of a system of orthogonal polynomials defined via a difference equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniform asymptotics and zeros of a system of orthogonal polynomials defined via a difference equation
چکیده انگلیسی

We study a class of sieved Pollaczek polynomials defined by a second-order difference equation (three-term recurrence relation). The measure of orthogonality is determined by using the Markov theorem and the Perron–Stieltjes inversion formula, and is shown consisting of an absolutely continuous part and a discrete part with infinitely many mass points. Uniform asymptotic approximations of these polynomials for large degree n are derived at a turning point αn and a critical point βn, involving respectively the Airy function Ai, and . Darboux's method, the method of steepest descents, and various uniform asymptotic techniques such as cubic transformations are used to derive the results. Asymptotic formulas for the least zeros, the largest zeros, and the zeros on both sides of βn are also obtained. Several numerical examples are provided to compare the approximate zeros with the true values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 369, Issue 2, 15 September 2010, Pages 453-472