کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619174 1339429 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple
چکیده انگلیسی

In this paper we extend the notion of a locally hypercyclic operator to that of a locally hypercyclic tuple of operators. We then show that the class of hypercyclic tuples of operators forms a proper subclass to that of locally hypercyclic tuples of operators. What is rather remarkable is that in every finite dimensional vector space over R or C, a pair of commuting matrices exists which forms a locally hypercyclic, non-hypercyclic tuple. This comes in direct contrast to the case of hypercyclic tuples where the minimal number of matrices required for hypercyclicity is related to the dimension of the vector space. In this direction we prove that the minimal number of diagonal matrices required to form a hypercyclic tuple on Rn is n+1, thus complementing a recent result due to Feldman.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 365, Issue 1, 1 May 2010, Pages 229-237