کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619224 1339430 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the set of limit points of the partial sums of series rearranged by a given divergent permutation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the set of limit points of the partial sums of series rearranged by a given divergent permutation
چکیده انگلیسی

We give a new characterization of divergent permutations. We prove that for any divergent permutation p, any closed interval I of R* (the 2-point compactification of R) and any real number s∈I, there exists a series ∑an of real terms convergent to s such that I=σap(n) (where σap(n) denotes the set of limit points of the partial sums of the series ∑ap(n)). We determine permutations p of N for which there exists a conditionally convergent series ∑an such that ∑ap(n)=+∞. If the permutation p of N possesses the last property then we prove that for any α∈R and β∈R* there exists a series ∑an convergent to α and such that σap(n)=[β,+∞]. We show that for any countable family P of divergent permutations there exist conditionally convergent series ∑an and ∑bn such that any series of the form ∑ap(n) with p∈P is convergent to the sum of ∑an, while σbp(n)=R* for every p∈P.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 362, Issue 2, 15 February 2010, Pages 542-552