کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619298 1631571 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlevé–Gambier classification
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlevé–Gambier classification
چکیده انگلیسی

We use a formula derived almost seventy years ago by Madhav Rao connecting the Jacobi Last Multiplier of a second-order ordinary differential equation and its Lagrangian and determine the Lagrangians of the Painlevé equations. Indeed this method yields the Lagrangians of many of the equations of the Painlevé–Gambier classification. Using the standard Legendre transformation we deduce the corresponding Hamiltonian functions. While such Hamiltonians are generally of non-standard form, they are found to be constants of motion. On the other hand for second-order equations of the Liénard class we employ a novel transformation to deduce their corresponding Lagrangians. We illustrate some particular cases and determine the conserved quantity (first integral) resulting from the associated Noetherian symmetry. Finally we consider a few systems of second-order ordinary differential equations and deduce their Lagrangians by exploiting again the relation between the Jacobi Last Multiplier and the Lagrangian.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 360, Issue 2, 15 December 2009, Pages 651-664