کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4619340 | 1339433 | 2010 | 18 صفحه PDF | دانلود رایگان |

Associated to a lower semicontinuous function, one can define its proximal mapping and farthest mapping. The function is called Chebyshev (Klee) if its proximal mapping (farthest mapping) is single-valued everywhere. We show that the function f is 1/λ-hypoconvex if its proximal mapping Pλf is single-valued. When the function f is bounded below, and Pλf is single-valued for every λ>0, the function must be convex. Similarly, we show that the function f is 1/μ-strongly convex if the farthest mapping Qμf is single-valued. When the function is the indicator function of a set, this recovers the well-known Chebyshev problem and Klee problem in Rn. We also give an example illustrating that a continuous proximal mapping (farthest mapping) needs not be locally Lipschitz, which answers one open question by Hare and Poliquin.
Journal: Journal of Mathematical Analysis and Applications - Volume 368, Issue 1, 1 August 2010, Pages 293-310