کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619346 1339433 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A proof of Markov's theorem for polynomials on Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A proof of Markov's theorem for polynomials on Banach spaces
چکیده انگلیسی

Our object is to present an independent proof of the extension of V.A. Markov's theorem to Gâteaux derivatives of arbitrary order for continuous polynomials on any real normed linear space. The statement of this theorem differs little from the classical case for the real line except that absolute values are replaced by norms. Our proof depends only on elementary computations and explicit formulas and gives a new proof of the classical theorem as a special case. Our approach makes no use of the classical polynomial inequalities usually associated with Markov's theorem. Instead, the essential ingredients are a Lagrange interpolation formula for the Chebyshev nodes and a Christoffel–Darboux identity for the corresponding bivariate Lagrange polynomials. We use these tools to extend a single variable inequality of Rogosinski to the case of two real variables. The general Markov theorem is an easy consequence of this.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 368, Issue 1, 1 August 2010, Pages 374-381