کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4619356 | 1339434 | 2010 | 9 صفحه PDF | دانلود رایگان |

The dynamics of a classical third-order Newton-type iterative method is studied when it is applied to degrees two and three polynomials. The method is free of second derivatives which is the main limitation of the classical third-order iterative schemes for systems. Moreover, each iteration consists only in two steps of Newton's method having the same derivative. With these two properties the scheme becomes a real alternative to the classical Newton method. Affine conjugacy class of the method when is applied to a differentiable function is given. Chaotic dynamics have been investigated in several examples. Applying the root-finding method to a family of degree three polynomials, we have find a bifurcation diagram as those that appear in the bifurcation of the logistic map in the interval.
Journal: Journal of Mathematical Analysis and Applications - Volume 366, Issue 1, 1 June 2010, Pages 24-32