کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619497 1339438 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints
چکیده انگلیسی

In this article we provide weak sufficient strong duality conditions for a convex optimization problem with cone and affine constraints, stated in infinite dimensional spaces, and its Lagrange dual problem. Our results are given by using the notions of quasi-relative interior and quasi-interior for convex sets. The main strong duality theorem is accompanied by several stronger, yet easier to verify in practice, versions of it. As exemplification we treat a problem which is inspired from network equilibrium. Our results come as corrections and improvements to Daniele and Giuffré (2007) [9].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 361, Issue 1, 1 January 2010, Pages 86-95