کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619534 1339439 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximal exponents of polyhedral cones (I)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Maximal exponents of polyhedral cones (I)
چکیده انگلیسی

Let K be a proper (i.e., closed, pointed, full convex) cone in Rn. An n×n matrix A is said to be K-primitive if there exists a positive integer k such that ; the least such k is referred to as the exponent of A and is denoted by γ(A). For a polyhedral cone K, the maximum value of γ(A), taken over all K-primitive matrices A, is called the exponent of K and is denoted by γ(K). It is proved that if K is an n-dimensional polyhedral cone with m extreme rays then for any K-primitive matrix A, γ(A)⩽(mA−1)(m−1)+1, where mA denotes the degree of the minimal polynomial of A, and the equality holds only if the digraph (E,P(A,K)) associated with A (as a cone-preserving map) is equal to the unique (up to isomorphism) usual digraph associated with an m×m primitive matrix whose exponent attains Wielandt's classical sharp bound. As a consequence, for any n-dimensional polyhedral cone K with m extreme rays, γ(K)⩽(n−1)(m−1)+1. Our work answers in the affirmative a conjecture posed by Steve Kirkland about an upper bound of γ(K) for a polyhedral cone K with a given number of extreme rays.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 365, Issue 2, 15 May 2010, Pages 570-583