کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619580 1339440 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semigroup crossed products and the induced algebras of lattice-ordered groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Semigroup crossed products and the induced algebras of lattice-ordered groups
چکیده انگلیسی

Let (G,G+) be a quasi-lattice-ordered group with positive cone G+. Laca and Raeburn have shown that the universal C∗-algebra C∗(G,G+) introduced by Nica is a crossed product BG+×αG+ by a semigroup of endomorphisms. The goal of this paper is to extend some results for totally ordered abelian groups to the case of discrete lattice-ordered abelian groups. In particular given a hereditary subsemigroup H+ of G+ we introduce a closed ideal IH+ of the C∗-algebra BG+. We construct an approximate identity for this ideal and show that IH+ is extendibly α-invariant. It follows that there is an isomorphism between C∗-crossed products and B(G/H)+×βG+. This leads to our main result that B(G/H)+×βG+ is realized as an induced C∗-algebra .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 364, Issue 2, 15 April 2010, Pages 498-507