کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619614 1339441 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps
چکیده انگلیسی

Under the assumption that a self-similar measure defined by a one-dimensional iterated function system with overlaps satisfies a family of second-order self-similar identities introduced by Strichartz et al., we obtain a method to discretize the equation defining the eigenvalues and eigenfunctions of the corresponding fractal Laplacian. This allows us to obtain numerical solutions by using the finite element method. We also prove that the numerical eigenvalues and eigenfunctions converge to the true ones, and obtain estimates for the rates of convergence. We apply this scheme to the fractal Laplacians defined by the well-known infinite Bernoulli convolution associated with the golden ratio and the 3-fold convolution of the Cantor measure. The iterated function systems defining these measures do not satisfy the open set condition or the post-critically finite condition; we use second-order self-similar identities to analyze the measures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 364, Issue 1, 1 April 2010, Pages 222-241