کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4619794 | 1339446 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The determination of the basin of attraction of a periodic orbit can be achieved using a Lyapunov function. A Lyapunov function can be constructed by approximation of a first-order linear PDE for the orbital derivative via meshless collocation. However, if the periodic orbit is only accessible numerically, a different method has to be used near the periodic orbit. Borg's criterion provides a method to obtain information about the basin of attraction by measuring whether adjacent solutions approach each other with respect to a Riemannian metric. Using a numerical approximation of the periodic orbit and its first variation equation, a suitable Riemannian metric is constructed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 354, Issue 2, 15 June 2009, Pages 606-618
Journal: Journal of Mathematical Analysis and Applications - Volume 354, Issue 2, 15 June 2009, Pages 606-618