کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4619916 1339449 2009 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear systems and determinantal random point fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Linear systems and determinantal random point fields
چکیده انگلیسی

In random matrix theory, determinantal random point fields describe the distribution of eigenvalues of self-adjoint matrices from the generalized unitary ensemble. This paper considers symmetric Hamiltonian systems and determines the properties of kernels and associated determinantal random point fields that arise from them; this extends work of Tracy and Widom. The inverse spectral problem for self-adjoint Hankel operators gives sufficient conditions for a self-adjoint operator to be the Hankel operator on L2(0,∞) from a linear system in continuous time; thus this paper expresses certain kernels as squares of Hankel operators. For suitable linear systems (−A,B,C) with one-dimensional input and output spaces, there exists a Hankel operator Γ with kernel ϕ(x)(s+t)=Ce−(2x+s+t)AB such that gx(z)=det(I+(z−1)ΓΓ†) is the generating function of a determinantal random point field on (0,∞). The inverse scattering transform for the Zakharov–Shabat system involves a Gelfand–Levitan integral equation such that the trace of the diagonal of the solution gives . When A⩾0 is a finite matrix and B=C†, there exists a determinantal random point field such that the largest point has a generalised logistic distribution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 355, Issue 1, 1 July 2009, Pages 311-334