کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620012 1339451 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line
چکیده انگلیسی

Consider an evolution family U=(U(t,s))t⩾s⩾0 on a half-line R+ and a semi-linear integral equation . We prove the existence of stable manifolds of solutions to this equation in the case that (U(t,s))t⩾s⩾0 has an exponential dichotomy and the nonlinear forcing term f(t,x) satisfies the non-uniform Lipschitz conditions: ‖f(t,x1)−f(t,x2)‖⩽φ(t)‖x1−x2‖ for φ being a real and positive function which belongs to admissible function spaces which contain wide classes of function spaces like function spaces of Lp type, the Lorentz spaces Lp,q and many other function spaces occurring in interpolation theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 354, Issue 1, 1 June 2009, Pages 372-386