کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620211 1339457 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On localization properties of Fourier transforms of hyperfunctions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On localization properties of Fourier transforms of hyperfunctions
چکیده انگلیسی

In [A.G. Smirnov, Fourier transformation of Sato's hyperfunctions, Adv. Math. 196 (2005) 310–345] the author introduced a new generalized function space U(Rk) which can be naturally interpreted as the Fourier transform of the space of Sato's hyperfunctions on Rk. It was shown that all Gelfand–Shilov spaces (α>1) of analytic functionals are canonically embedded in U(Rk). While the usual definition of support of a generalized function is inapplicable to elements of and U(Rk), their localization properties can be consistently described using the concept of carrier cone introduced by Soloviev [M.A. Soloviev, Towards a generalized distribution formalism for gauge quantum fields, Lett. Math. Phys. 33 (1995) 49–59; M.A. Soloviev, An extension of distribution theory and of the Paley–Wiener–Schwartz theorem related to quantum gauge theory, Comm. Math. Phys. 184 (1997) 579–596]. In this paper, the relation between carrier cones of elements of and U(Rk) is studied. It is proved that an analytic functional is carried by a cone K⊂Rk if and only if its canonical image in U(Rk) is carried by K.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 351, Issue 1, 1 March 2009, Pages 57-69