کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4620353 1339461 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the reservoir technique convergence for nonlinear hyperbolic conservation laws – Part I
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the reservoir technique convergence for nonlinear hyperbolic conservation laws – Part I
چکیده انگلیسی

This paper is devoted to the analysis of flux schemes coupled with the reservoir technique for approximating hyperbolic equations and linear hyperbolic systems of conservation laws [F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir scheme for systems of conservation laws, in: Finite Volumes for Complex Applications, III, Porquerolles, 2002, Lab. Anal. Topol. Probab. CNRS, Marseille, 2002, pp. 247–254 (electronic); F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, Un procédé de réduction de la diffusion numérique des schémas à différence de flux d'ordre un pour les systèmes hyperboliques non linéaires, C. R. Math. Acad. Sci. Paris 335 (7) (2002) 627–632; F. Alouges, F. De Vuyst, G. Le Coq, E. Lorin, The reservoir technique: A way to make Godunov-type schemes zero or very low diffusive. Application to Colella–Glaz, Eur. J. Mech. B Fluids 27 (6) (2008)]. We prove the long time convergence of the reservoir technique and its TVD property for some specific but still general configurations. Proofs are based on a precise study of the treatment by the reservoir technique of shock and rarefaction waves.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 356, Issue 2, 15 August 2009, Pages 477-497