کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4620357 | 1339461 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalizations of Bohr inequality for Hilbert space operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let B(H)B(H) be the space of all bounded linear operators on a complex separable Hilbert space HH. Bohr inequality for Hilbert space operators asserts that for A,B∈B(H)A,B∈B(H) and p,q>1p,q>1 real numbers such that 1/p+1/q=11/p+1/q=1,|A+B|2⩽p|A|2+q|B|2|A+B|2⩽p|A|2+q|B|2 with equality if and only if B=(p−1)AB=(p−1)A. In this paper, a number of generalizations of Bohr inequality for operators in B(H)B(H) are established. Moreover, Bohr inequalities are extended to multiple operators and some related inequalities are obtained. The results in this paper generalize results known so far. The idea of transforming problems in operator theory to problems in matrix theory, which are easy to handle, is the key role.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 356, Issue 2, 15 August 2009, Pages 525–536
Journal: Journal of Mathematical Analysis and Applications - Volume 356, Issue 2, 15 August 2009, Pages 525–536
نویسندگان
P. Chansangiam, P. Hemchote, P. Pantaragphong,